NATIONAL ENERGY TECHNOLOGY LABORATORY

Direct Numerical Simulation of CO2 Diffusion in Reconstructed Solid Sorbent Particles

University of Pittsburgh UrginiaTech WestVirginiaUniversity URS

Nagendra Krishnamurthy & Danesh Tafti Virginia Tech.

Carnegie Mellon

Introduction

- Post-combustion carbon capture methodologies
 - Solvent based processes
 - Solid sorbents
 - Metal oxides
 - Amines on porous support base
 - ...
 - Membranes
 - ...

Introduction

Complex porous microstructures

Multi-scale nature

- Macro particles sized a few 100 microns
- Meso channels sized 5-50 nm

A variety of physical phenomena involved

- Fluid flow
- Heat and mass transfer
- Surface kinetics

— ...

A porous spherical particle created using stochastic reconstruction with a porosity of 0.40

Introduction

Numerical tools

- Use of realistic porous microstructures
- Capability to perform simulations through these complex geometries

Understanding the involved physical processes

- Importance of realistic geometries
- Effects of porosity, microstructure characteristics etc.
- Adsorption and desorption

Approach

Macro-scale modeling

- Recreate realistic porous particle geometries
- Heat and mass transfer simulations

Meso-scale modeling

- Adsorption/desorption model
- Knudsen diffusion

Carbon capture solid

physics in sorbents

Approach

Macro-scale modeling

- Recreate realistic porous particle geometries
- Heat and mass transfer simulations

Porous reconstruction

- Stochastic reconstruction
- Experimental imaging for input correlations

GenIDLEST + IBM framework

- Species diffusion
- Conjugate heat transfer
- Parallelization

Stochastic reconstruction

- Use of a stochastic reconstruction method
 simulated annealing
- Input experimentally determined autocorrelation function (ACF)
- Initial random field with desired porosity
- Final porous structure with desired porosity and auto-correlation

A 2D porous medium generated with a porosity of $\varepsilon = 0.55$

Stochastic reconstruction

Input auto-correlation function created based on a recreated 2D image

Stochastically reconstructed porous spherical particle with porosity of 0.55

Experimental imaging

- FIB-SEM imaging using FEI Helios 600 Nanolab at NCFL, Virginia Tech.
- Resolution
 - 0.9 nm @ 15kV
 - 1.4 nm @ 1kV
- Surface contour and internal microstructure characterization

Experimental imaging – Sectional view

Experimental imaging – Surface contour

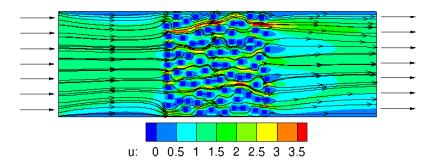
Approach

Macro-scale modeling

- Recreate realistic porous particle geometries
- Heat and mass transfer simulations

Porous reconstruction

- Stochastic reconstruction
- Experimental imaging for input correlations


GenIDLEST + IBM framework

- Species diffusion
- Conjugate heat transfer
- Parallelization

2D Porous Channel Flow

- Flow through porous channels
- Friction factors for different flow Reynolds numbers
 - Random arrangement of regular (square) blocks
 - Stochastic reconstruction
 - Analytical solution due to Darcy-Forchheimer equation

Species diffusion – 2D

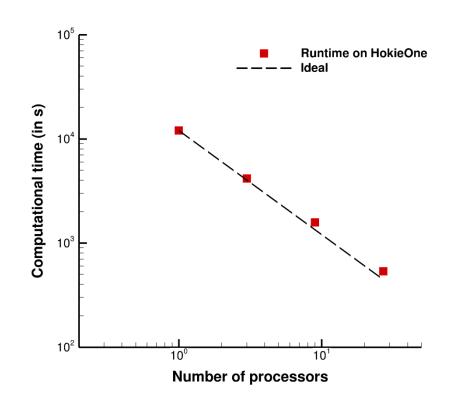
Porous particles (2D)

- 500 micron diameter particle
- Ambience conditions –15% CO2
- Initial conditions 0% CO2
- Monitoring CO2
 concentration levels within the particle
- Time for 95% CO2 level saturation in the porous particle

Diffusion times observed for a 500 micron 2D porous particle with varying porosities

Parallelization

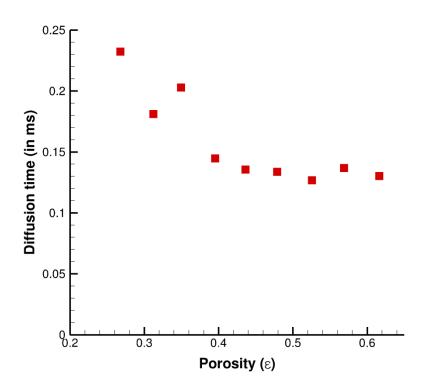
- 3D simulations computationally very expensive
 - 7.2 million cells for 3D porous particle case
 - 20+ days of computational time on 1 processor
- Domain decomposed MPI parallelism – in line with GenIDLEST framework



Parallelization

Strong scaling study

- Species transport problem through porous spherical particle
- 7.2 million cells divided across a max. of 27 blocks
- HokieOne
 - Shared-memory SGI UV system
 - 2.66Ghz Intel Xeon cores
 - 6 cores and ~30 GB memory per node
- Computation time for 100 time-steps



Species diffusion – 3D

Porous spherical particles

- Same conditions as for 2D case
- Porosity values of 0.20-0.60
- 100 microns diameter

Diffusion times observed for a 100 micron spherical porous particle with varying porosities

Effect of Temperature Field

- Inclusion of energy equation solution
 - Constant temperature BC
 - Conjugate heat transfer
- Conditions
 - Particle temperature at 398K
 - Initial fluid temperature –298K
- Diffusion time reduction due to higher temperatures

Summary

- A numerical framework for macro-scale porous media
 - Stochastic reconstruction of porous microstructures
 - Experimental imaging to obtain input correlations
 - Fluid flow, species transport and (conjugate) heat transfer simulations
 - Flows through porous channels, particles etc.
 - Parametric studies

Future work

- Alternate imaging techniques for digital reconstruction
- Models for surface adsorption/desorption and the related kinetics
- Modeling meso-scale effects and coupling with macro-scales
- Simulations to produce correlation maps to be used for large scale simulations

Acknowledgements

 This financial support for this technical effort was provided through the National Energy Technology Laboratory – Regional University Alliance (NETL-RUA) program under RES activity number 683.232.001.

NATIONAL ENERGY TECHNOLOGY LABORATORY

Thank you!

Questions?

